This article was downloaded by: [University of California, San Diego]

On: 21 August 2012, At: 11:49 Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,

37-41 Mortimer Street, London W1T 3JH, UK

Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/qmcl19

The Structure of Several meso Tetraarylporphinato-Manganese(III) Tetracyanoethenide Complexes

Erik J. Brandon $^{a\ b\ c}$, Ken-Ichi Sugiura $^{a\ b\ c\ d}$, Atta M. Arif $^{a\ b\ c}$, Louise Liable-sands $^{a\ b\ e}$, Arnold L. Rheingold $^{a\ b\ e}$ & Joel S. Miller $^{a\ b\ c}$

Version of record first published: 04 Oct 2006

To cite this article: Erik J. Brandon, Ken-Ichi Sugiura, Atta M. Arif, Louise Liable-sands, Arnold L. Rheingold & Joel S. Miller (1997): The Structure of Several meso Tetraarylporphinato-Manganese(III) Tetracyanoethenide Complexes, Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 305:1, 269-278

To link to this article: http://dx.doi.org/10.1080/10587259708045064

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

^a Department of Chemistry, University of Utah, Salt Lake City, UT, 84112

^b Department of Chemistry, The University of Delaware, Newark, DE, OH 19716, USA

^c University of Utah

^d Institute of Scientific and Industrial Research, Osaka, 565, Japan

^e University of Delaware

THE STRUCTURE OF SEVERAL meso TETRAARYLPORPHINATO-MANGANESE(III) TETRACYANOETHENIDE COMPLEXES

ERIK J. BRANDON, 1a KEN-ICHI SUGIURA, 1a,b ATTA M. ARIF, 1a LOUISE LIABLE-SANDS, 1c ARNOLD L. RHEINGOLD, * 1c and JOEL S. MILLER * 1a

Department of Chemistry, University of Utah, Salt Lake City, UT 84112 and the Department of Chemistry, The University of Delaware, Newark, DE, OH 19716 USA

Abstract The structures of several uniform $\cdots D^+A \cdot D^+A \cdot D^+A \cdot \cdots$ (D: S=2 Mporphryin; A: S=1/2 TCNE) chain compounds with the [TCNE] $\cdot trans-\mu_2$ bonded to two Mn(III)'s exhibiting cooperative magnetic properties have been studied by single crystal x-ray diffraction. Herein we summarize the structures obtained for these compounds and their ν CN infrared absorptions.

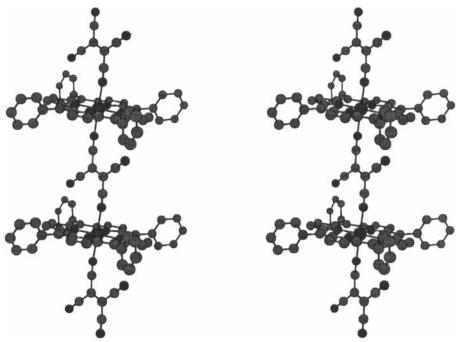
INTRODUCTION

The study of molecule-based magnetic materials based upon organic radicals spins is an area of increasing interdisciplinary research worldwide.^{1,2} Ferro- or ferrimagnetic ordering has been observed for several classes of materials possessing the [TCNE] - (TCNE = tetracyanoethylene) radical anion. For example, [FeCp*2].+[TCNE]. (Cp* = pentamethylcyclopentadienide) is a ferromagnet with a Curie (critical or ordering) temperature, T_c, of 4.8 K, ³ while V(TCNE)_x·y(solvent) (T_c ~ 400 K)⁴ and [MnTPP]⁺[TCNE] · 2PhMe (TPP = meso-tetraphenylporphinato), 5 (T_c = 14 K) are ferrimagnets. Current research focuses toward establishment of relationships between structure and magnetic phenomena, particularly in the correlation of dimensionality, connectivity and the critical temperature of the material. ^{1,2} The clathrate nature of this class of materials⁶ enables the introduction of different solvents into the structure to alter the inter- and intrachain couplings and subsequently the ordering temperatures. We have prepared [MnTPP][TCNE] \times S [S = PhR (R = H, Me, Et, Cl, F, Br, NO₂, CN), $C_6H_4R_2$ (R = Me, Cl), and $C_6H_3R_3$ (R = Me, Cl)] and have obtained crystals structure for [MnTPP][TCNE] \times S{S = 1,2-dimethylbenzene [x = 1, A), 6 1,2dichlorobenzene (x = 4, B^6), 1,2,4-trichlorobenzene, C] in addition to that reported for S= PhMe, x = 2, D. ⁵ Additionally, the [TCNE] salts of 4-phenyl-substituted

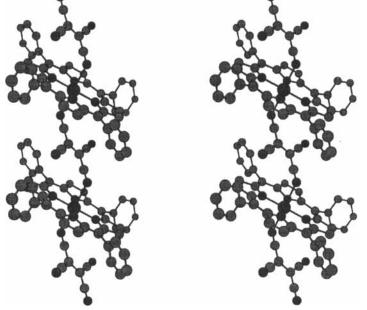
^{1. (}a) University of Utah. (b) Current address: Institute of Scientific and Industrial Research, Osaka 565 Japan. (c) University of Delaware.

[MnTPP]+'s, i. e., 1 (E - H), 2-fluorophenyl substituted [MnTPP]+, i. e., I, and mesotetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphinatomanganese(III), MnTP'P, J, have been studied by single crystal x-ray and herein we report the structures of A-J.

1 X = OMe, MnTOMePP, G

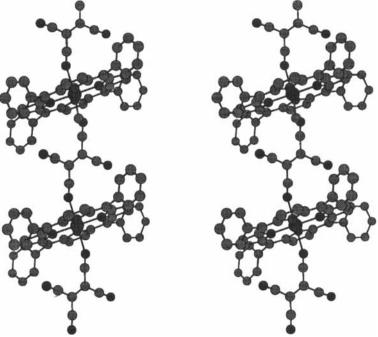

1 $X = Bu^t$, $MnTBu^tPP$, H

Each of these [Mpor]+[TCNE]- salts possess an uniform $\cdots D^+A \cdot D^+A \cdot D^+A \cdot \cdots$ (D: S=2 Mpor; A: S=1/2 TCNE) chain with the [TCNE]- trans- μ_2 bonded to two Mn(III)'s, Stereoviews 1 - 10. A - J belong to the $P\bar{I}$ (Z = 1) space group with an unit cell axis being the chain direction the its length being the intrachain Mn···Mn separation. The unit cell parameters are listed in Table 1. Table 2 lists the Mn-NC and intrachain Mn···Mn distances, the Mn-N-C and Mn-Mn-N angles as well as the dihedral angle formed by the MnN4 and TCNE planes. Each of these bonding modes have characteristic ν CN infrared absorptions, Figure 12. The magnetic properties of A, 6 B, 6 D, 5,8 and J 7 have been reported while in addition to more detailed studies the determination of the magnetic properties of the other salts are in progress.


TABLE 1 Unit Cell Parameters^a for A - J.

		O O O			•		
Compound	a, Å	b, Å	c, Å	α, deg	β deg	γ deg	V, Å ³
A	9.261	10.218	13.294	98.880	94.630	110.640	1151
В	9.489	12.865	12.890	92.660	106.190	105.470	1444
C	9.588	10.885	14.475	106.912	99.137	107.511	1327
D	10.116	11.008	12.498	108.150	98.040	67.920	1224
E	10.171	10.189	14.522	107.510	85.580	111.510	1334
F	10.082	14.515	10.280	105.870	111.110	84.810	1350
G	9.896	10.256	14.447	82.640	92.400	109.070	1374
H	10.189	15.822	16.195	83.410	108.140	100.570	2435
I	10.185	11.081	12.378	107.550	82.880	111.090	1243
J	8.597	14.756	17.573	101.160	100.560	96.370	2125

^a The intrachain Mn...Mn separation is italicized


STEREOVIEW 1. A, [MnTPP][TCNE]·1,2-C₆H₄Me₂ (the solvents and Hs are omitted for clarity).

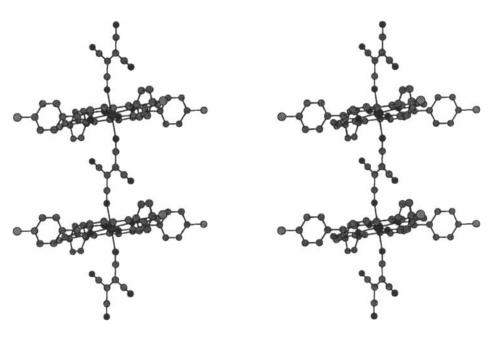
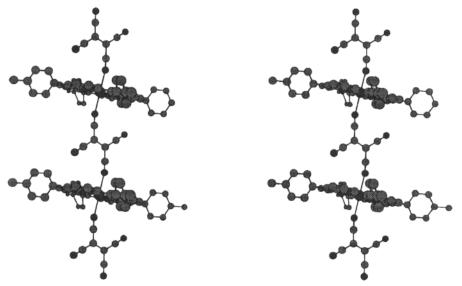
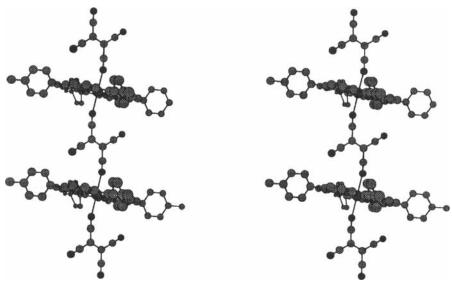
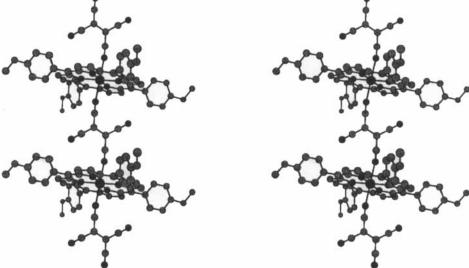
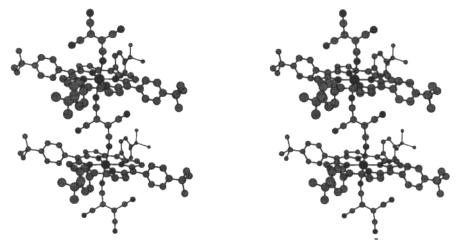

STEREOVIEW 2. B, [MnTPP][TCNE] $\cdot 2(1,2-C_6H_4Cl_2)$ (the solvents and Hs are omitted for clarity).

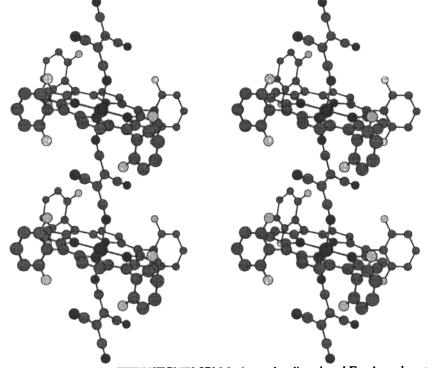
TABLE 2 Mn-NC, Intrachain Mn···Mn Distances, Mn-N-C and Mn-Mn-N angles, and the Dihedral Angle Formed by the MnN₄ and TCNE planes for A - J.


Compound	Mn-NC, Å	Mn-N-C, deg	Dihedral Angle, deg	Mn…Mn, Å	Mn-Mn-N, deg
A	2.288	167.0	93.99	10.218	14.8
В	2.356	125.1	29.50	9.489	31.2
C	2.334	130.2	36.80	9.588	29.0
D	2.305	148.1	69.51	10.116	19.3
E	2.267	167.2	86.78	10.189	14.6
F	2.294	168.4	90.47	10.280	14.0
G	2.290	165.3	83.69	10.256	14.3
H	2.254	169.6	100.10	10.189	13.8
I	2.316	148.4	74.17	10.185	18.3
J	2.299	129.0	30.40	8.587	29.4


STEREOVIEW 4. C, [MnTPP][TCNE]·2(1,2,4-C₆H₃Cl₃) (the solvent sand Hs are omitted for clarity).


STEREOVIEW 5. D, [MnTPP][TCNE]-2PhMe (the solvents and Hs are omitted for clarity).


STEREOVIEW 6. E, [MnTClPP][TCNE]-2PhMe (the solvents and Hs are omitted for clarity).


STEREOVIEW 7. F, [MnTtolP][TCNE] 2PhMe (the solvents and Hs are omitted for clarity).

STEREOVIEW 8. G, [MnTOMePP][TCNE]-2PhMe (the solvents and Hs are omitted for clarity).

STEREOVIEW 9. H, [MnTBu/P][TCNE] 6(1,4-C₆H₄Me₂)(note the disordered Fs; the solvents and Hs are omitted for clarity).).

STEREOVIEW 10. I, [MnTFPP][TCNE]-2PhMe (note the disordered Fs; the solvents and Hs are omitted for clarity).

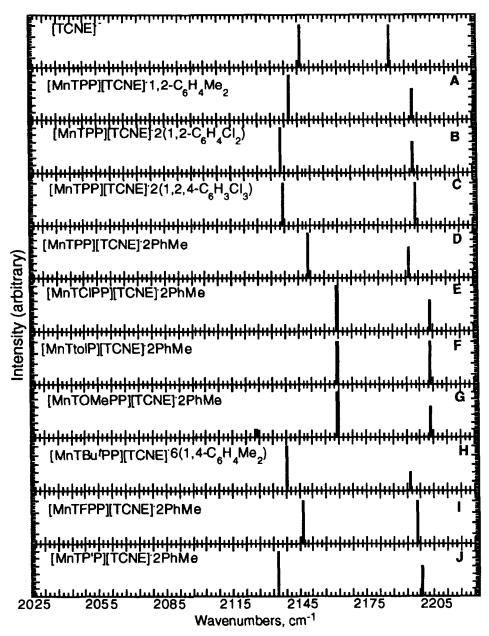
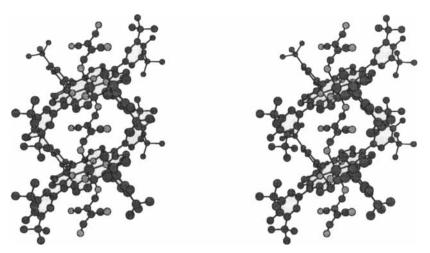



FIGURE 12. Summary of the vCN IR absorptions for isolated [TCNE] and A - J.

STEREOVIEW 11. J, [MnTPP][TCNE]·2PhMe (the solvents and Hs are omitted for clarity).

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the U. S. Department of Energy Division of Materials Science (Grant No. DE-FG03-93ER45504) and the National Science Foundation (Grant No. CHE9320478). We appreciate the discussions of C. M. Wynn, M. Girtu, and A. J. Epstein. K-i. S also acknowledges support by the Monbu-sho fellowship program.

REFERENCES

- Proceedings on the Conference on Ferromagnetic and High Spin Molecular Based Materials, Miller, J. S.; Dougherty, D. A. (Eds.), Mol. Cryst., Liq. Cryst. 1989, 176. Proceedings on the Conference on Molecular Magnetic Materials, Kahn, O.; Gatteschi, D.; Miller, J. S.; Palacio, F. (Eds). NATO ARW Molecular Magnetic Materials, 1991, E198. Proceedings on the Conference on the Chemistry and Physics of Molecular Based Magnetic Materials, Iwamura, H.; Miller, J. S. (Eds.), Mol. Cryst., Liq. Cryst. 1993, 232/233. Proceedings on the Conference on Molecule-based Magnets, Miller, J. S.; Epstein, A. J., (Eds.), Mol. Cryst., Liq. Cryst. 1995, 271-274.
- Reviews. Buchachenko, A. L.; Russ. Chem. Rev. 1990, 59, 307; Usp. Khim. 1990, 59, 529. Kahn, O., Structure and Bonding, 1987, 68, 89. Caneschi, A.; Gatteschi, D.; Sessoli, R.; Rey, P., Acc. Chem. Res. 1989, 22, 392. Miller, J. S.; Epstein, A. J.; Reiff, W. M., Acc. Chem. Res. 1988, 21, 114. Miller, J. S.; Epstein, A. J.; Reiff, W. M., Science, 1988, 240, 40. Miller, J. S.; Epstein, A. J.;

- Reiff, W. M., Chem. Rev. 1988, 88, 201. Miller, J. S. and Epstein, A. J., New Aspects of Organic Chemistry, Yoshida, Z.; Shiba, T.; Ohsiro, Y. (Eds), VCH Publishers, New York, NY 1989, 237. Miller, J. S.; Epstein, A. J., Angew. Chem. internat. Ed. 1994, 33, 385; Angew. Chem. 1994, 106, 399. Miller, J. S.; Epstein, A. J., Adv. Chem. Ser. 1995, 245, 161. D. Gatteschi, Adv. Mat., 1994, 6, 635. Kahn, O., Molecular Magnetism, VCH Publishers, Inc. 1993.
- Miller, J. S.; Calabrese, J. C.; Dixon, D. A.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M., J. Am. Chem. Soc. 1987, 109, 769. (b) Miller, J. S.; Calabrese, J. C.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M., J. Chem. Soc., Chem. Commun. 1986, 1026. Chittipeddi, S.; Cromack, K. R.; Miller, J. S.; Epstein, A. J., Phys. Rev. Lett. 1987, 22, 2695.
- Miller, J. S.; Yee, G. T.; Manriquez, J. M.; Epstein, A.J., in the Proceedings of Nobel Symposium #NS-81 Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure, Oxford University Press, 1993, 461. La Chim. & La Ind. 1992, 74, 845. Epstein, A. J.; Miller, J. S.; in the Proceedings of Nobel Symposium #NS-81 Conjugated Polymers and Related Materials: The Interconnection of Chemical and Electronic Structure, Oxford University Press, 1992, 475. La Chim. & La Ind. 1993, 75, 185.
- Miller, J. S.; Calabrese, J. C.; McLean, R. S.; Epstein, A.J., Adv. Mater. 1992, 4, 498.
- Sugiura, K-i.; Wynn, C. M.; Girtu, M.; Epstein, A. J.; Arif, A. M.; Miller, J. S., in preparation.
- Böhm, A.; Vazquez, C.; McLean, R. S.; Calabrese, J. C.; Kalm, S. E.; Manson, J. L.; Epstein, A. J.; J. S. Miller, J. S., *Inorg. Chem.* 1996, 35, 3083.
- Zhou, P.; Morin, B. G.; Epstein, A. J.; McLean, R. S.; Miller, J. S., J. Appl. Phys. 1993, 73, 6569. Brinckerhoff, W. B.; Morin, B. G.; Brandon, E. J.; Miller, J. S.; Epstein, A. J., J. App. Phys. 1996, 79, 6147.